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Abstract

Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect

both mean momentum and scalars. At present, no generally accepted model exists for the former; in the
latter case, mesoscales are modeled with a bolus velocity u� to represent a sink of mean potential energy.

However, comparison of u�(model) vs. u� (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown

that u�(model) is incomplete and that additional terms, ‘‘unrelated to thickness source or sinks’’, are re-

quired. Thus far, no form of the additional terms has been suggested.

To describe mesoscale eddies, we employ the Navier–Stokes and scalar equations and a turbulence model

to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for

the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the

momentum and thickness fluxes. In the latter case, the bolus velocity u� is found to contain two types of
terms: the first type entails the gradient of the mean potential vorticity and represents a positive contri-

bution to the production of mesoscale potential energy; the second type of terms, which is new, entails the

velocity of the mean flow and represents a negative contribution to the production of mesoscale potential

energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is re-

turned to the original reservoir of mean potential energy. This type of terms satisfies the physical

description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442].

The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the

same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to

contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the
mean flow. An expression is derived for the mesoscale diffusivity jM and for the mesoscale kinetic energy K
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in terms of the large-scale fields. The predicted jMðzÞ agrees with that of heuristic models. The complete

mesoscale model in isopycnal coordinates is presented in Appendix D and can be used in coarse resolution

ocean global circulation models.

� 2003 Elsevier Ltd. All rights reserved.
1. The problem

Coarse resolution ocean codes (e.g., those used in climate studies, Griffies et al., 2000) can
only resolve the largest structures and leave the mesoscale eddies (50–100) km to be modeled.
To separate the resolved from the unresolved scales, one first averages the equations for the
momentum and thickness. The averaging for the momentum equations is not unique, as
Greatbatch (2001) and Greatbatch and McDougall (2003) have recently discussed in detail.
The key point, however, is that while some representations may highlight some physical
features more clearly than others (e.g., how eddies influence the mean flow, Wardle and
Marshall, 2000), they always require an additional input, a model to express the contribution
of the unresolved scales in terms of the resolved ones. Broadly speaking, there are three proce-
dures:

(1) First procedure. Medvedev and Greatbatch (2003, MG3) and before them, other authors
(Geller et al., 1992), employed eddy resolving codes (in these cases, atmospheric codes) to
obtain expressions for the unresolved mesoscale contributions. However, as noted in MG3, the
procedure is not unique for it requires intermediate steps that are based more on mathematical
arguments than on physics. The approach is nonetheless quite instructive in that MG3 employed
eddy-resolving codes to provide not only second-order fluxes but also third-order moments,
specifically, the flux of the temperature variance. In the ocean case, a similar approach was carried
out by Bryan et al. (1999) (see below) but with the difference that a model for the mesoscale fluxes
was first chosen and then tested.

(2) Second procedure. One can construct a heuristic mesoscale model to express the ‘‘mesoscale
fluxes’’ in terms of the resolved scales. The validation of the mesoscale model can then be carried
out by comparing its predictions against an eddy resolving ocean code or directly using it in a
coarse resolution ocean model, OGCM and then comparing the results with a variety of data. The
first type of test was used by several authors (Rix and Willenbrand, 1996; Bryan et al., 1999; Gille
and Davis, 1999; Roberts and Marshall, 2000; Nakamura and Chao, 2000; Solovev et al., 2002).
Use of an OGCM was carried out by Danabasoglu et al. (1994); Bonning et al. (1995), Gent
et al. (1995) and by McDougall et al. (1996). The results exhibited a sharper thermocline, a
cooler abyssal ocean, a more realistic latitudinal structure and magnitude of the polar heat
transport, etc.

(3) Third procedure. One attempts to construct a dynamical mesoscale model by solving ana-
lytically the Navier–Stokes equations and the thickness equations. Clearly, this procedure requires
approximations. Killworth (1997) considered the linearized case while here we present a model
which includes the non-linearities which are treated with a turbulence model that was previously
tested against a variety of turbulent data.
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2. Equations for the mean variables

In isopycnal coordinates, and with the Boussinesq and adiabatic approximations, the dynamic
equations for the two-dimensional velocity field u and the thickness h are ðat ¼ oa=otÞ:
ut þ ðu � rÞuþ f e� u ¼ 	q	1
0 rB ð1aÞ

ht þr � ðuhÞ ¼ 0 ð1bÞ

Here, h is the thickness and B is the linear Bernoulli function or Montgomery function:
h ¼ oz=oq; B 
 p þ gqz ð1cÞ

f ¼ 2X sin/ is the Coriolis parameter, / is the latitude and e is the unit vector along 	r3q; r3 is
the 3D gradient operator and r is the 2D gradient operator at constant density q. Due to the
adiabatic approximation, the diapycnal component of the velocity field is neglected in (1a). This
implies that the non-linear interactions act on isopycnal surfaces but not between them. The
resulting isopycnal 2D flows interact among themselves only via the linear Bernoulli function B.

Using an overbar to denote a generic Eulerian Mean, EM, (temporal or spatial or a ‘‘mean’’
over a finite scale) and a prime to indicates the departure from the mean, e.g., u ¼ �uþ u0, we
obtain from Eqs. (1a) and (1b):
�ut þ ðf þ �fÞe� �u ¼ 	q	1
0 rB�

	 e� Ff ð1dÞ

ht þ �u � r�h ¼ 	r � Fh ð1eÞ

where B�

¼ Bþ 1=2q0u
2 and f is the relative vorticity. Thus, one must model three mesoscale

functions: the thickness flux, the relative vorticity flux and the eddy kinetic energy K:
Fh 
 u0h0; Ff 
 u0f0; K ¼ 1=2u02 ð1fÞ

The main purpose of this work is to express the mesoscale functions (1f) in terms of the large scale
fields. The forms of Fh and Ff will be derived within the adiabatic approximation; however, the
determination of K will require the inclusion of diabatic processes which allow a steady state to be
reached (Section 13).

It may be instructive to make a connection with another representation transformed eulerian
mean, the TEM, (Andrews and McIntyre, 1976, 1978; Plumb and Mahlman, 1987; Andrews et al.,
1987, section 3) whereby one introduces the decomposition:
u ¼ ûþ u00; û ¼ hu=�h ¼ �uþ �h	1Fh ¼ �uþ u� ð1gÞ
qh ¼ f þ f; q ¼ q̂þ q00; �hq̂ ¼ qh ¼ f þ �f ð1hÞ
where q is potential vorticity and u� is the bolus velocity (Rhines, 1982). Eqs. (1a) and (1b), and
the ones for q̂ and �h now give
o

ot
�uþ ðf þ �fÞe� û ¼ 	rB�

	 e� Fq ð1iÞ

o

ot
q̂þ û � rq̂ ¼ 	�h	1r � Fq ð1jÞ

ht þr � ð�hûÞ ¼ 0 ð1kÞ
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where Fq is the PV potential vorticity PV-flux defined as:
Fq ¼ hq00u00 ¼ Ff 	 q̂Fh ð1lÞ

where the second relation follows directly from the above definitions. Since in Eq. (1k) there are
formally no ‘‘eddy terms’’, if Eq. (1i) were prognostic in the variable û, there could be only two
mesoscale terms to model, the PV-flux Fq that enters in both Eqs. (1i) and (1j) and the eddy kinetic
energy K that enters the function B� . However, Eq. (1i) contains two velocities, �u and û, a fact
common to many models (Tung, 1986; Andrews et al., 1987; Greatbatch, 1998, 2001). In this case,
one must find a model to express the mesoscale variables corresponding to thickness flux, PV-flux
and eddy kinetic energy:
Fh; Fq; K ð1mÞ

in terms of large scale fields. In Section 4 we discuss a result of the model presented here that sheds
some light on the relationship between Fh and Fq.

The outline of the paper is as follows. In Section 3, we give a brief summary of three major
unsolved problems in mesoscale modeling. In Section 4 we present the key results we have ob-
tained. In Section 5 we derive the equations for the turbulent fields describing the mesoscales. In
Section 6 we discuss the conditions under which the non-linear interactions are important and in
Section 7 we discuss the model we use to for them. In Section 8 we show that the set of mesoscale
equations reduces to an eigenvalue problem for the mesoscale Bernoulli function, the solution of
which is discussed in Section 9. In Sections 10 and 11, we give the expressions for the thickness
and vorticity fluxes, Eq. (1m) while in Sections 12 and 13 we model the third variable of interest,
the eddy kinetic energy K, Eq. (1f). In Section 14 we discuss several predictions of the model and
comparison with the data. In Section 16 we draw some conclusions. The complete model is
summarized in Appendix D.
3. Three unsolved problems in mesoscale models

3.1. Thickness vs. potential vorticity

Thus far, two heuristic models have been suggested to model the bolus velocity u�. The first by
Gent and McWilliams (1990) is given by a down-gradient of the mean isopycnal thickness:
u� ¼ 	jM
�h	1r�h ð2aÞ
Here, jM is a mesoscale diffusivity that is not specified by the model. Other authors (Holland
et al., 1984; Rhines and Young, 1982a,b; Lee et al., 1997; Greatbatch, 1998; McDougall and
McIntosh, 1996, 2001; Killworth, 1997; Visbeck et al., 1997; Treguier et al., 1997; Treguier, 1999;
Drijfhout and Hazeleger, 2001; Dukowicz and Greatbatch, 1999) have suggested instead the
relation:
u� ¼ jMq̂	1rq̂ ð2bÞ

the primary reason being the fact that q is a materially conserved quantity. It is still an open
question whether (2a) or (2b) is the physically more correct representation of u�, if either.



V.M. Canuto, M.S. Dubovikov / Ocean Modelling 8 (2005) 1–30 5
3.2. Additional terms

A first hint as to the question just discussed came from the use of an eddy resolving code at
1/12� resolution by Bryan et al. (1999). The authors concluded that the isopycnal thickness flux Fh

defined in (1f) has a non-zero divergence and a non-zero curl, while model (2a) with jM ¼ constant
implies an Fh with zero curl. Moreover, the curl of Fh was shown to have a strength comparable
with, if not larger than, that of the divergence. The conclusion of Bryan et al. (1999) was that the
form of u� is:
u� ¼ jMq̂	1rq̂þAdditional terms ð2cÞ

Even though Bryan et al. (1999) were not able to provide the form for the ‘‘additional terms’’, they
were able to interpret them as an indication that ‘‘the bolus velocity is more than just an agent of
thickness mixing and flows are set up that are not closely linked to thickness source or sinks’’. The
presence of additional terms may explain the results of Roberts and Marshall (2000) who found
no overwhelming evidence in support of (2b) in lieu of (2a) since both expressions are incomplete.
Similarly, it may be at the root of Gille and Davis (1999) results showing that (2a) is still
incomplete since the ‘‘skill index’’ is still only 40% (defined as the percentage of the mean squared
mesoscale density flux divergence that is reproduced by the model). Finally, Solovev et al. (2002)
concluded that (2a) ‘‘simulates the wrong sign of the divergences of the eddy heat flux in about
half of the domain’’, in accord with previous results by Nakamura and Chao (2000). In addition,
the presence of additional terms in (2c) makes it impossible to tune jM to simulate them. In
conclusion, the nature of the additional terms is still unclear (Smith, 1999).
3.3. Mesoscale diffusivity jM

The z-dependence of jM or equivalently, its dependence on the resolved large-scale fields has
been studied by several authors (Held and Larichev, 1996; Visbeck et al., 1997; Killworth, 1997;
Treguier, 1999; Karsten and Marshall, 2002) but no unanimous outcome has yet emerged. An
expression for the mesoscale diffusivity in terms of the resolved scales is thus needed.
4. Key results of the present model

Here, we present the main results we will derive in the following sections. The expressions for
Fh, Eqs. (17a) and (17b) contain two parts as in (2c), the first of which is the gradient of q̂, while
the ‘‘additional terms’’ have the form:
Additional terms ¼ 	jMhq̂	1rq̂i 	 jMð1þ r	1
t Þr	2

d f
	1e� ð�u	 h�uiÞ ð2dÞ
The average hAðzÞi defined in Eq. (15d), is the integral over z of AðzÞ with K1=2 as the weight factor.
In Eq. (2d) rd is the Rossby deformation radius and rt is the turbulent Prandtl number. In
accordance with the findings of Bryan et al. (1999), Eq. (2d) shows that the last two terms do not
entail the gradients of either thickness/potential vorticity. The mesoscale diffusivity jM in Eq. (2d)
is derived to have the form:
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jMðzÞ � rdK1=2ðzÞ ð2eÞ

The model for KðzÞ is discussed in Sections 12 and 13; the predicted jMðzÞ from (2e) is similar to
that derived from heuristic models (Karsten and Marshall, 2002), that is, it is the largest at the
surface jMð0Þ. In addition, the predicted value of jMð0Þ agrees with that of Karsten and Marshall
(2002) who employed models of Holloway (1986) and Keffer and Holloway (1998) together with
TOPEX Poseidon data for the sea surface height.

The bolus velocity (2c) and (2d) is shown to satisfy the baroclinic relation:
Z
u�ðzÞdz ¼ 0 ð2fÞ
The mesoscale flux Ff, is given by Eq. (21):
Ff ¼ Kð1þ rtÞ	1
exhq̂	1rq̂i 	 Kðrtr2df Þ

	1ð�u	 h�ui þ cRÞ ð2gÞ

Here, cR is the velocity of the barotropic Rossby waves. Eq. (2g) contains both the gradient of the
potential vorticity as well as terms that involve the mean flow velocity. The q-flux (1l) is then given
by
Fq ¼ 	�hjMrq̂þ F�
q ð2hÞ
with:
F�
q ¼ Ff 	 q̂�hðAdditional termsÞ ð2iÞ
and where Eq. (2d) must be used to compute F�
q. The first term in Fq agrees with Rhines and

Holland (1979) and Rhines and Young (1982a,b) conclusion that Fq ‘‘should have a down gra-
dient component’’. In addition, Eq. (2i) provides an explicit form of the extra term.

Concerning the relation between Fh and Fq, in Section 11 we show that only the ageostrophic
part of the mesoscale velocity field contributes to the relative vorticity flux Ff. Thus, if one as-
sumes a geostrophic approximation, Eq. (1l) gives:
Fq ¼ 	qFh ð2jÞ

and thus only one mesoscale flux need to be modeled, for example the PV-flux together with the
eddy kinetic energy K. However, as we show in Appendix B, the ageostrophic component of the
velocity field is indispensable to close the so-called Lorenz energy cycle, specifically, the trans-
formation of EKE (eddy kinetic energy) into EPE (eddy potential energy).
5. Dynamic equations for the turbulent fields

To derive the mesoscale dynamic equations from Eqs. (1a) and (1b), we separate the fields into
a mean (represented by an overbar) and a fluctuating part (represented by a prime):
u ¼ �uþ u0; h ¼ �hþ h0; B ¼ �Bþ B0 ð3Þ
Since jru0j � jr�uj we can neglect the isopycnal gradients o�ui=oxj. The equations for the fluctu-
ating fields are derived to be:
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u0t þ �u � ru0 þ f e� u0 ¼ 	q	1rB0 þQðu0Þ ð4aÞ
h0t þ �u � rh0 þ �hr � u0 þ u0 � r�h ¼ Qðh0Þ ð4bÞ
B0

q ¼ gz0; h0 
 z0q ð4c;dÞ
where the Q�s represent the non-linear terms, specifically:
Qðu0Þ ¼ u0 � ru0 	 u0 � ru0; Qðh0Þ ¼ r � u0h0 	 r � u0h0 ð4eÞ

The linear version of Eqs. (4) corresponding to Q ¼ 0 was studied by Killworth (1997). Next, we
Fourier transform the fields on an isopycnal surface around the origin defined by the 2D radius
vector r0 while r denotes a variable radius from the same origin. Since the large scale fields �u, �h,rh
almost do not change on the scales characterizing the mesoscale eddies, we consider them con-
stant. As for the Coriolis parameter f , we take into account its variability via the relation
f ¼ f0 þ b � r where b ¼ rf and f0 is the value of f at the origin and b is directed along a
meridian. Let us take the space and time Fourier transforms of Eqs. (4a) and (4b). When doing so,
in the third term in Eq. (4a) the function f is substituted by the operator:
^¼ f0 þ ib � o

ok
ð4fÞ
We further split the fluctuating mesoscale velocity field into solenoidal (divergence free) and
potential (curl free) components:
u0ðkÞ ¼ usðkÞ þ upðkÞ; ð4gÞ
where
n ¼ k=k; n � usðkÞ ¼ 0; n� upðkÞ ¼ 0 ð4hÞ
and thus:
usðkÞ ¼ n� eusðkÞ; upðkÞ ¼ nupðkÞ ð4iÞ

Using Eqs. (4g) and (4h), the equations for the scalars velocities usðkÞ and upðkÞ and Eq. (4b)
become:
	ixus ¼ 	ik � ð�uþ cRÞus þ f̂ up þ Qs ð5aÞ
	ixup ¼ 	ik � ð�uþ cRÞup 	 f̂ us 	 ikq	1B0 þ Qp ð5bÞ
	ixh0 ¼ 	iðk � �uÞh0 	 i�hkup 	 n � r�hup þ ðe� nÞr�hus þ Qh ð5cÞ
where cR is the velocity of the barotropic Rossby waves:
cR ¼ k	2e�rf ¼ k	2exb ð5dÞ

The cR term in Eqs. (5a) and (5b) comes from acting with the second term in (4f) upon the unit
vector n in (4g) and (4h). Notice that after the Fourier transformation, the gradient of the Ber-
noulli function in Eq. (4a) has only one component along k. As a result, the Bernoulli term is
absent in Eq. (5a) which is the projection of the Fourier transformed equation (4a) onto the
direction kxe. Below, we shall show that the solenoidal and potential components us;p will coincide
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with the geostrophic (subscript g) and ageotrophic (subscript a) components of the mesoscale
velocity field:
us ¼ ug; up ¼ ua ð5eÞ

In Eqs. (5a) and (5b) we can neglect the second term inf̂ defined in (4f) since bLe � 10	1s	1 � f ,
where Le is a typical eddy size. However, if we had neglected such a term everywhere we would
have missed the b-term that gives rise to the Rossby velocity cR, a term that becomes important in
Eq. (5a) when us � up which indeed characterizes the mesoscale field, as we discuss below, Eq.
(7a). To simplify the notation, we shall use f instead of f0 henceforth.
6. When are the non-linear terms important?

Here we discuss under what conditions the non-linear interactions can be neglected compared
to other terms in the Eqs. (5a)–(5c). For simplicity, we consider the case:
�u ¼ 0; r�h ¼ 0 ð6a;bÞ
6.1. High frequency inertial gravity waves x > f

In this limit, Eqs. (5a)–(5d) yield gravity-inertial waves. Neglecting cR, the dispersion relation is:
x2 ¼ f 2ð1þ k2r2nÞ ð6cÞ

where rn is the set of eigenvalues (Rossby deformation radii) obtained by solving the eigenvalue
problem:
oqqBn þ k2
nBn ¼ 0; kn ¼ N�h=rnf ð6dÞ
where N is the Brunt–Vaisala frequency, N 2 ¼ 	ðg�hq0Þ
	1
. Since for mesoscale eddies we have that

k	1
0 � rd ¼ r1, from (5a) we derive that x � f and us � up. Since Qs � Qp � u2s‘

	1, the ratio of the
last two terms in (5a) is given by
QsðfusÞ	1 � usðf ‘Þ	1 � Rot ð6eÞ

where Rot is the turbulent Rossby number. For ocean mesoscale eddies with characteristic values
us � 10	1 ms	1, ‘ � 102 km and f � 10	4 s	1, we obtain Rot � 1 and thus Qs is smaller than the
Coriolis terms in (5a) and (5b); Qh � uh0r	1

d is much smaller than xh0 � fh0 since
usr	1

d � 3� 10	6s	1 � f . We conclude that in this case, the Q�s are unimportant.

6.2. Low frequency Rossby waves x � f

The low frequency solution of Eq. (5a) yields:
us � up ð7aÞ

In this case, under conditions (6a,b), Eqs. (5) yield Rossby waves with the dispersion relation:
x ¼ 	bðex � kÞr2nð1þ k2r2nÞ
	1 � b‘ ð7bÞ
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where rn are the solutions of Eq. (6d). Proceeding as above, we derive the relations:
Qs=ðkcRusÞ � us=cR; Qs=ðxusÞ � us=ðx‘Þ � us=ðb‘2Þ � us=cR ð7cÞ

Since from (5d) we have cR � 10	2 ms	1 and since us � 10	1 ms	1, the ratios (7c) are larger than
unity. In this case the non-linear terms Qs are not smaller than the other terms and must be retained.
This means that the ensuing turbulent flow can be viewed as a system of ‘‘broken’’, low frequency,
Rossby waves.
7. Modeling the non-linear interactions

To treat the non-linear terms, we use a turbulence model that was previously tested in a large
variety of flows that included shear flows, buoyancy flows, 2D turbulence, turbulence under
strong rotation, freely decaying turbulence, etc., for a total of about 80 turbulence statistics
(Canuto and Dubovikov, 1996a,b,c, CD96).

The CD model predicts the generation of coherent states (CS) whose lifetime is longer than the
turbulent time ‘=w, where ‘ and w are typical eddy sizes and velocity. For example, in the case of
Benard convection, CS are large-scale coherent loop-like flows circulating between opposite plates
(Wu and Libchaber, 1992; Ciliberto et al., 1996). In the ocean, CS are the mesoscale eddies. Since
there is no diapycnal mass transfer between layers of different densities, the Q-terms operate only
inside the layers that interact among themselves through the term ikB0 in Eq. (5b). In each iso-
pycnal layer we can therefore employ a 2D turbulence model.

In standard 2D turbulence, both energy and enstrophy (square of relative vorticity) are con-
served which entails an upscale energy cascade and a downscale enstrophy cascade. However, in
the present context of geostrophic turbulence, what is conserved is potential rather than relative
vorticity. As discussed in detail in Section 15, relative vorticity is conserved (with an enstrophy
cascade) only for scales ‘1 � rd The absence of an enstrophy cascade in the range rd–‘1 assures
that only an inverse energy cascade is possible. Mathematically, this is represented by a negative
viscosity.

Taking into account a negative viscosity but a positive diffusivity, the CD model yields for the
Q�s in the vicinity of the maxima k0 of the spectra the following results:
QsðkÞ ¼ ~mtusðkÞ; QpðkÞ ¼ ~mtupðkÞ; QhðkÞ ¼ 	~vth
0ðkÞ ð8aÞ

~mt 
 k20mtðk0Þ; ~vt 
 k20vtðk0Þ ð8bÞ

mtðkÞ ¼ m 1

�
þ 1

2
m	2

Z 1

k
p	2EðpÞdp

�1=2
; vtðkÞ ¼ r	1

t mtðkÞ ð9aÞ
where EðpÞ is the energy spectrum and rt ¼ 0:72 is the turbulent Prandtl number (the value was
derived in CD96). The expression for the turbulent viscosity mtðkÞ can also be written as:
mtðkÞ ¼ m½1þ Re2ðkÞ�1=2 ð9bÞ
where ReðkÞ � Uð‘Þ‘m	1 � ½EðkÞDk�1=2ðkmÞ	1
is a wave-number dependent Reynolds number. It

may be noticed that for large Re, mt=m ¼ Re, as expected. From Eqs. (9a) we have that for mt > m:
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~m ¼ rt~v ¼ Ck0K1=2 ð9cÞ

where C � 1 and K is the eddy kinetic energy. Data from Stammer (1997, 1998) show that
j�uj � 10	2 cm s	1, u � 10	1 ms	1 and thus K is larger than the mean flow kinetic energy, MKE.
This means that ð~m; ~vÞ > jk � �uj. Since we show below that x � k � u and since cR � 10	2 ms	1, the
time scales of the problem satisfy the following relations:
jk � cRj6 jk � �uj � jxj < ~m; ~v < f ð9dÞ

where k	1

0 � rd � 30 km. The last inequality follows from the fact that even for the most energetic
eddies with K � 0:2 m2 s	1, we have ~m6 10	5 s	1 which is an order of magnitude smaller than
f ffi 10	4 s	1. Using (9c), the second and fourth terms of (9d) also imply that:
j�u < ju0j ð9eÞ
8. Dynamic equations for mesoscale eddies

To derive the equations for the mesoscale eddies, we substitute the CD expression (8) into (5a)–
(5c). Eq. (5a) becomes
	fup ¼ f~m 	 i½k � ð�uþ cRÞ 	 x�gus ð10aÞ

Due to (7a) and (9d), the last three terms in Eq. (5b) dominate. However, due to (7a) and the last
inequality in (9d) and the expression (8a) for Qp; the latter is three orders of magnitude smaller
than the other two terms. Eq. (5b) then becomes:
fus ¼ 	ikq	1B0; z0 ¼ g	1B0
q ð10bÞ
which is the geostrophic relation in isopycnal coordinates. In Eqs. (5c) we can neglect the term
	n � r�hup which, because of (7a), is small compared with ðe� nÞ � r�uh0us. That term is also
smaller than the term i�hkup by more than an order of magnitude since the ratio of these terms is of
order ðk0LÞ	1 � rdL	1 � 3� 10	2, where L � 103 km is the size of the large-scale fields. Thus, Eq.
(5c) becomes:
	ixh0 ¼ 	ik � �uh0 þ ðe� nÞr�hus 	 i�hkup 	 ~vh0 ð10cÞ

Eliminating us, up, h0 and z0 between (10a)–(10c), we obtain a single equation for the function
B0 ¼ B0ðk;q;xÞ computed at k ¼ k0.
o2

oq2

�
þ K

�
B0 ¼ 0 ð11aÞ
where we have defined the following variables:
K ¼ k2�h2ð1	 iX1sÞ	1ð1þ iX2sÞ ð11bÞ
k2 
 rtk20N

2f 	2; N 2 ¼ 	ðg�hq0Þ
	1 ð11cÞ

s 
 ~v	1 þ ~m	1 ¼ ~v	1ð1þ r	1
t Þ ð11dÞ

X1 ¼ ð1þ r	1
t Þ	1ðx 	 k � �uÞ; X2 ¼ ð1þ rtÞ	1ðx 	 k � eVÞ ð11eÞ
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eV ¼ �uþ cR 	 f ðk20�hÞ
	1
e�r�h ð11fÞ
Eq. (11a) constitutes the vertical eigenvalue problem for B0 with eigenvalues k0 and x. Using Eqs.
(9c) and (9d), it turns out that sX1;2 � �uK	1=2 < 1. Thus, up to second-order in sX1;2, Eqs. (11b),
(11d) and (11f) simplify to:
K ¼ k2�h2ð1þ iXsÞ; s	1 ¼ 1

5
k0K1=2 ð12aÞ

X ¼ x 	 k � V; V 
 �uþ ð1þ rtÞ	1
cR 	 f ½ð1þ rtÞ�hk20 �

	1
e�r�h ð12bÞ
With the boundary conditions B0
qðqbÞ ¼ 0 and B0

qðqtÞ ¼ 0 (Killworth, 1997), where the subscripts
(b,t) stand for bottom and top, the eigenvalue equation (11a) is complete.
9. Solution of the eigenvalue problem

We solve (11a) perturbatively in powers of Xs, namely we write (for simplicity we will omit the
prime in B0) B ¼ b0 þ b1 þ � � �. In the zeroth- and first-order, one has the relations:
bL0b0 ¼ 0; bL0b1 ¼ 	iXsb0; bL0 
 1þ ðk�hÞ	2 o2

oq2
ð13aÞ
From Eqs. (11a) and (12a), it follows that the function b0 must coincide with one of the eigen-
functions Bn solutions of the eigenvalue problem Eq. (6d). The eddy size Le 
 p=k0 is determined
by the eigenvalue rn given by
k	1
0 ¼ r1=2

t rn ð13bÞ

In Eq. (13b), the non-linear interactions only enter through the largely constant ratio of the
turbulent viscosity to the turbulent conductivity mt=vt ¼ rt. Only n ¼ 1 is consistent with the
measured data and r1 ¼ rd is the first Rossby deformation radius. Since rt � Oð1Þ, we have
Le � 3rd, in agreement with the data (Stammer, 1997, 1998). With these premises, next we use the
expansion:
b0 ¼ a1B1; b1 ¼
X1
0

�anBn ð14aÞ
where
P�

means that the B1 term is absent. It is easy to prove that the eigenfunctions Bn, Bm are
orthogonal with the weight factor �h:
Z

B�
nBm�hdq ¼ cndnm ð14bÞ
where cn are normalization factors. In addition, since the operator in (13a) is real, we can choose
the Bn to be real as well. Substituting (14a) into the second of (13a), multiplying by �hB1, inte-
grating over q and using (14b), we obtain:
Z qb

qt

jB1j2Xs�hdq ¼ 0 ð14cÞ
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Substitution of X from (12b) yields the eigenvalue x:
x ¼ k � ud ð15aÞ

where
ud ¼ h�ui 	 ð1þ r	1
t Þ	1fr2de� h�h	1r�hi þ ð1þ rtÞ	1

cR ð15bÞ

or, using Eqs. (5d) and (13b):
ud ¼ h�ui þ rtð1þ rtÞ	1fr2dexhq̂	1rq̂i ð15cÞ
which shows that ud is barotropic (z-independent) but depends on location. The average hX i is
defined as:
hX i 

Z qb

qt

XC	1=2jB1j2�hdq
Z qb

qt

C	1=2jB1j2�hdq

 !	1

ð15dÞ
where
CðqÞ 
 KðqÞ=Kt ð15eÞ
is the mesoscale kinetic energy normalized to its surface value Kt (the subscript t stands for top).
CðqÞ will be discussed later while B1ðzÞ is solution of Eq. (6d).
10. Thickness flux Bolus velocity

Of the three mesoscale variables in Eq. (1m), we begin to compute the first, the thickness flux:
Fh ¼ u0h0 ¼
Z

FhðkÞdk ð16aÞ
Since Eqs. (10) show that all fields are related to one another, they can all be expressed in terms of
only one of them. Thus, all second-order correlations can be expressed in terms of the energy
spectrum EðkÞ. As shown in Appendix A, this yields the following results:
FhðkÞ ¼ 	ð1þ r	1
t Þ	1sEðkÞ�hW ð16bÞ

W ¼ �h	1r�hþ ð1þ r	1
t Þr	2

d f
	1e� ½�u	 ud þ ð1þ rtÞ	1

cR� ð16cÞ
Though Eqs. (16b) and (16c) are valid near k0, we extend them to the whole energy-containing
region under the reasonable assumption that the widths of the spectra do not differ greatly. The
integration over k is then equivalent to substituting EðkÞ with K. We obtain:
Fh ¼ �hu�; u� ¼ 	jMW; jM ¼ ð1þ r	1
t ÞsK ð17aÞ
The vector W can be presented in two forms. Using the mean potential vorticity q̂ defined in (1h),
one obtains:
W ¼ 	q̂	1rq̂þ hq̂	1rq̂i þ ð1þ r	1
t Þr	2

d f
	1e� ð�u	 h�uiÞ ð17bÞ
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Alternatively, we have:
W ¼ �h	1r�h	 h�h	1r�hi þ ð1þ r	1
t Þr	2

d f
	1e� ð�u	 h�uiÞ ð17cÞ
We notice that the b-terms contained in the mean vorticity q are depth independent and thus
cancel out in going from (17b) to (17c). The mesoscale diffusivity is obtained by substituting (12a)
and (13b) into (17a) and by using the value rt ¼ 0:72. The result is:
jM ¼ 1:8s1=2rdK1=2ðzÞ ð18Þ

where we have added the filling factor ‘‘s’’ to represent the fraction of the flow�s area occupied by
the mesoscale eddies. (17–18) are the expressions for the thickness flux, bolus velocity and mesoscale
diffusivity. Using Eqs. (17a–c) and (15d,e) it is easy to verify that u� satisfies the relation:
Z

u�ðzÞdz ¼ 0 ð19Þ
showing that u� is a baroclinic variable.
11. Relative vorticity flux, potential vorticity flux

Next, consider the second mesocale variable in Eq. (1m), the relative vorticity flux:
Ff 
 u0f0 ð20aÞ

First, we employ the vorticity flux in k-space:
dðk	 k0ÞeFfðkÞ ¼ Reu0
�ðk0Þf0ðkÞ ð20bÞ
Using the definition of f and the decomposition (4g) and (4h), we derive that:
f0ðkÞ ¼ 	ikusðkÞ ð20cÞ

Because of the presence of i in (20c) only upðkÞ, the potential (ageostrophic) part of u0ðkÞ, con-
tributes to (20b). Using (10b) and (15a), we finally obtain that near k � k0:
dðk	 k0ÞeFfðkÞ ¼ 	f 	1k	1
0 nk � ð�u	 ud þ cRÞuðkÞu�ðk0Þ ð20dÞ
The vorticity spectrum FfðkÞ is related to eFfðkÞ as follows:
FfðkÞ ¼ k
Z eFfðkÞdn ð20eÞ
Using the same procedure that led to Fh, we obtain:
Ff ¼ Kð1þ rtÞ	1
exhq̂	1rq̂i 	 Kðrtr2df Þ

	1ð�u	 h�ui þ cRÞ ð21Þ

For completeness, we also construct the PV-flux, Eq. (1l). With Eqs. (21) and (17a,b), we obtain:
Fq ¼ 	�hjMrq̂þ F�
q ð22aÞ
where
F�
q ¼ Ff 	 q̂�hjM½hq̂	1rq̂i þ ð1þ r	1

t Þr	2
d f

	1e� ð�u	 h�uiÞ� ð22bÞ
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The PV-flux is contributed by two terms. The first term is the gradient of the mean PV and
confirms the results of Rhines and Holland (1979), and Rhines and Young (1982a,b) that the q-
flux ‘‘should have a down-gradient term’’. The remaining term contains contributions from the
relative vorticity flux, the z-averaged PV-gradient and the mean flow.
12. Mesoscale kinetic energy: part A

Last, we derive an expression for the eddy kinetic energy, Eq. (1m). Since the derivation is
rather complex, we divided the task into two parts. In part A, we derive an expression of the ratio
(15e) of the eddy kinetic energy to its surface values and in part B we derive an expression for the
surface value Kt.

Using the normalization BnðqsÞ ¼ 1 in (14b), from Eqs. (7a) and (14a), it follows that a1 ¼ 1
and so:
CðqÞ ¼ jB1 þ R0anBnj2j1þ Ranj	2 ð23aÞ

where the Bn�s are functions of q. The zeroth-order approximation, corresponding to taking all
an ¼ 0, is not sufficient since B1ðqÞ vanishes at some q�. From Eqs. (14a) and (14b) it follows that:
an ¼ c	1
n

Z
�hb1ðqÞB�

nðqÞdq ð23bÞ
At the same time, from Eqs. (13a) and (6c), one has:
Anancn ¼ i

Z
XsB1B�

n
�hdq ð23cÞ
where
An ¼ r2d=r
2
n 	 1 ð23dÞ
Using the WKB method, it can be shown that rn � rd=n and thus An � n2 	 1. From Eqs. (23b)–
(23d) it follows that the an decrease quite rapidly with increasing n. In reality, the decrease is even
faster than the above analysis indicates since the eigenfunctions Bn oscillate quite rapidly thus
reducing their contribution to the integral in (23b). Thus, the main contribution to the sums in
(23a) comes from n ¼ 0. In addition, since B0 ¼ 1, only these terms are important since all BnðqÞ
with nP 2 decrease when qP q�, where the correction to the zeroth-order is essential. Finally,
since the operator in (6c) is real and hermitian, we can choose the Bn to be real as well. From (23b)
and (23c) it follows that the an must be purely imaginary. Combining Eqs. (23a,b), (11d), (12b),
(15a,b) and (17c), we obtain:
K
Kt


 CðqÞ ¼ jB1j2
�

þ ja0j2



1
�

þ ja0j2

	1

ð24aÞ
where
ja0j2 ¼ 2f 2r4dj
2 j ¼ H	1

Z
�hK	1=2B1ðqÞWdq ð24b;cÞ
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where H is ocean�s depth, W is given by Eqs. 17b,17c and B1ðqÞ is solution of Eq. (6d). The kinetic
energy K appearing in (24c) can be approximated as follows. Since the term a0 in (24a) represents
a correction to the zero order approximation:
C0ðqÞ ¼ jB1j2 ð24dÞ

we may substitute (24d) into (24c). Using (24d), we can represent B1ðqÞ as:
B1ðqÞ ¼ hðq� 	 qÞC0ðqÞ1=2 ð24eÞ

where hðxÞ ¼ �1 for x > 0 and x < 0. Substitution of (24e) and (15d) into (24b,c) gives:
ja0j2 ¼ 2f 2r4dK
	1
t J2 ð25Þ

J ¼ H	1

Z
hðq� 	 qÞW�hdq ð26Þ
The problem of expressing the ratio K=Kt is thus complete: it is given by relations (24a), (25) and
(26) while B1 is given by solving (6d).
13. Mesoscale kinetic energy: part B

The well-known Lorenz cycle (Holton, 1992, fig. 10.13) represents the observed energy cycle
among eddies and their sources, the baroclinic instabilities (Appendix B and Fig. 1). A key feature
to be noticed is that mean kinetic energy (MKE) transforms into mean potential energy (MPE),
not vice versa. As a result, MPE is two orders of magnitude larger than MKE. This is because at
large scales, the Rossby number is very small and the (almost geostrophic) large-scale mean
velocity is orthogonal to the gradient of the mean potential energy and the latter performs no
work. Let us denote by Pb the production of eddy potential energy (EPE) by baroclinic insta-
bilities at rd (process 1, Fig. 1). Lorenz cycle simply states that EPE is then converted to EKE
(eddy kinetic energy). At first, this seems surprising since the previous argument about the absence
of work by the mean potential energy holds true for the eddy potential energy as well. The Lorenz
model does not provide the details of how the EPEfiEKE conversion occurs. In the present
model, EPE first cascades from large to small scales (process 2). This leads to the EPEfiEKE
conversion (process 3a) only at scales sufficiently small (called k1 in Fig. 1) where the Rossby
number has becomes of order unity. The size of the scales at which this occurs ‘1 � k	1

1 follows
from the condition that the corresponding turbulent time scale s be of the order of the Coriolis
time scale sf � 1; a typical value is ‘1 � 1 km. Process 3a is however not the only process
occurring at these scales since there is also an irreversible dissipation (process 3b). The EKE thus
generated has an inverse cascade (process 4) toward larger scales until scales of order kd � r	1

d

where, via the ageostrophic velocity field up, energy gets exchanged between the velocity and the
h field (processes 5,6). This energy is an addition to the one originating from the large scale
baroclinic instabilities.

To obtain an expression for Pb, let us denote by ep;k the fluxes of potential and kinetic energies
while ed is the dissipation (which is zero under adiabatic conditions). Energy conservation applied
to the left and right hand sides of Fig. 1 yields:



Fig. 1. The energy exchange cycle discussed in Appendix B.
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Pb þ
Z

ek dz ¼
Z

ep dz;
Z

ðep 	 ed 	 ekÞdz ¼ 0 ð27aÞ
If we call ~g ¼ ed=ep the fraction of eddy potential energy that goes into the dissipative process 3b
of Fig. 1, Eqs. (27a) can be combined to give:
Pb ¼ g	1

Z
ek dz; g 
 ~g	1 	 1 ð27bÞ
Since Kolmogorov�s law relates ek to K which we consider known, we need to compute Pb. If U is
the potential energy per unit horizontal area (to simplify the notation, all integrals on q will be
understood to have lower and upper limits qb and qt), we have:
EPE ¼
Z
U d2r; U ¼ 1

2
g
Z
z02 dq ð28aÞ
and since z0 ¼ g	1B0
q, use of the boundary conditions B0

bðqÞ ¼ B0
tðqÞ ¼ 0 gives (we omit the primes

from now on):
U ¼ 	 1

2
g	1

Z
BqqBdq ð28bÞ
If one further introduces the spectrum of the eddy potential energy UðkÞ:
U ¼
Z
UðkÞdk ð28cÞ
use of Eqs. (12a) with K in the lowest order and Eqs. (28b) and (28c) gives:
UðkÞ ¼ 	 1

2
ðfrdÞ2

Z
ShðkÞ�h	1 dq; ShðkÞ ¼ k

Z
hðkÞh�ðk0Þd2k0 dn ð28dÞ
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Differentiating Eq. (28d) with respect to time, and since both �h and rd have very long characteristic
time scales, one obtains:
o

ot
ShðkÞ ¼ k

Z
Re htðkÞh

�ðk0Þ
h i

d2k0 dn ð28eÞ
Using the equation for h given by Eq. (10c), the first term in the rhs yields zero contribution; the
last two terms express the transformation of energy within eddies that we discuss in Appendix B;
therefore, the contribution of the second term of (10c) can only be interpreted as the contribution
due to the interaction of large mean fields with the eddies. In Fig. 1, such process is labeled 1. The
corresponding contribution to oUðkÞ=ot must be interpreted as the effective rate of production of
eddy potential energy (per unit horizontal area) and thus we have:
Pb ¼ ðfrdÞ2
Z

ðFh � r�hÞ�h	1 dq ¼ ðfrdÞ2
Z

u� � r�hdq ð29Þ
We are in the position to compute Kt. Let us go back to (27b). Within our model, K is governed by
the inverse kinetic energy cascade flux ek and by the eddy length scale ‘ � rd. Thus, only a Kol-
mogorov-type relation K � ðej‘Þ2=3 is allowed. Notice, however that such a relation does not
imply a Kolmogorov spectrum since ej is not a constant but depends on the wavenumber k due
the linear interaction of different isopycnal layers via the (linear) Bernoulli function B0. Intro-
ducing (15d) and using (29) with (17), Eq. (27b) gives:
K1=2
t ½Kt 	 6:7gr1=2

t /� ¼ 0 ð30aÞ
which has two solutions:
Kt ¼ 5:7g/; Kt ¼ 0 ð30bÞ
The function /, with dimensions of a velocity square, does not depend on depth but on location
through both rd and f . It is given by
/ ¼ ð/1 þ /2Þ/	1
3 ð30cÞ

/1 ¼ 	A1

Z
C1=2½�h	1r�h	 h�h	1r�hi� � r�hdq ð30dÞ

/2 ¼ A2

Z
C1=2ðe�r�hÞ � ð�u	 h�uiÞdq ð30eÞ

/3 

Z

C3=2�hdq ð30fÞ
where A 
 r4df
2 and A2 
 ð1þ r	1

t Þr2df . Since /ðCÞ is a function of C, from Eq. (30b) it follows
that so is Kt and from (25) we then have a0 ¼ a0ðCÞ. As a consequence, Eq. (24a) for CðqÞ must be
solved iteratively.
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14. Predictions and tests of the model

14.1. Baroclinic nature of the bolus velocity

Using (17a,b,c) and (15d,e), it is easy to verify that u� satisfies the relation:
Z
u�ðzÞdz ¼ 0 ð31Þ
which shows that u� is a baroclinic velocity, as expected. Previous models did not automatically
satisfy (31) and additional delta functions were required at the surface so as to satisfy (31) (for a
recent discussion, see Killworth, 2003).

14.2. Profile of eddy kinetic energy

Here we compare the predicted profile CðqÞ with the measurements by Richardson (1983a)
presented within the vertical section along 55�W in the interval 15�N–45�N. The maximum of the
eddy kinetic energy occurs at 38�N (Gulf Stream). Using the latter data, we computed the nor-
malized profile CðzÞ ¼ KðzÞ=Kt and compared it with the model results Eqs. (24a), (25) and (17c).
When using Eq. (25), we employed Kt ¼ 0:2 m2 s	2 as from the same data. In addition, to compute
rd and W in Eqs. (25) and (17c), we needed the profiles of �uðzÞ, NðzÞ and r �h which however are
not given in Richardson (1983a). For this reason, we obtained this information from (Richardson,
1983b; Owens, 1984; Antonov et al., 1998; Boyer et al., 1998). The behavior predicted by the
model is in good agreement with the measured profile by Richardson (1983a). An additional
prediction of the present model is that the profile of the variable CðzÞ=NðzÞ has two maxima at zt
and zb and a minimum at z � 	1 km. This is also in agreement with the measured values (Schmitz,
1994). Since the mesoscale diffusivity jM depends on K1=2ðzÞ as Eq. (18) shows, the predicted
behavior of jMðzÞ has the form qualitatively similar to that depicted in Fig. 2. When compared
with Fig. 10a of Karsten and Marshall (2002), the behaviors are quite similar.

14.3. Mesoscale diffusivity

Using typical values of Kt � ð0:5–1Þ10	2 m2 s	2 (Stammer, 1998), and rd � 30 km, Eq. (18)
gives:
jMðsurfaceÞ � 3s1=2103 m2 s	1 ð32aÞ

Since the filling factor s < 1, Eq. (32a) is close to the value used in the GM model (Gent and
McWilliams, 1990; Gent et al., 1995). Karsten and Marshall (2002) used for jM (surface) the
models of Holloway (1986) and Keffer and Holloway (1998) and the TOPEX/Poseidon data for
the sea surface height. Their result, shown in their Fig. 2, is:
103 6 jMðsurfaceÞ < 3� 103 m2 s	1 ð32bÞ

which is in agreement with (32a). The function jMðzÞ is given by (18) and (30b):
jMðqÞ ¼ Crd/
1=2C1=2ðqÞ; C ¼ 4:3ðsgÞ1=2 ð32cÞ



Fig. 2. Eddy kinetic energy profile CðqÞ defined in Eq. (15d). Measured data for the Gulf Stream 39�N, 55�W
(Richardson, 1983a) are represented by D while model results are represented by crosses (+).
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Since rd and / do not depend on depth, the z-dependence of jM stems form CðqÞ which we have
plotted in Fig. 2. It follows that jMðzÞ is predicted to be the largest at the top, followed by a rapid
decrease, ultimately reaching a value constant with depth. This behavior is in accordance with the
heuristic expressions suggested by Visbeck et al. (1997) and Karsten and Marshall (2002, Fig. 10).
Using an eddy resolving code, Bryan et al. (1999) found that an overall consistent ocean model
was obtained with:
jMðzÞ ¼ 0:13r2dfRi
	1=2 ð32dÞ
A plot of Ri	1=2 vs. z shows that jMðzÞ has the same z-dependence as the one exhibited in Fig. 2. To
compute jMðzÞ from (32c), we need to compute / from (30c)–(30f). Using an eddy resolving ocean
code, we have done so and the result is:
/ � 0:1 m2 s	2 ð32eÞ

which yields:
jMðzÞ � C103C1=2ðzÞ m2 s	1 ð32fÞ

which, at the surface, is quite close to (32a). In addition, the mesoscale kinetic energy K is esti-
mated to be:
K � 10	2 m2 s	2 ð32gÞ

which is also in agreement with measured data (Schmitz, 1996; Stammer, 1998).
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14.4. Energy considerations

Substitution of (17a) and (17c) into (29) leads to the presence of two terms in Pb, namely:
Pb ¼ Pbð1Þ þ Pbð2Þ ð33aÞ

where
ðfrdÞ	2Pbð1Þ ¼ 	
Z

jM½�h	1r�h	 h�h	1r�hi� � r�hdq ð33bÞ

Pbð2Þ ¼ 	f ð1þ r	1
t Þ
Z

jMe� ½�u	 h�ui� � r�hdq ð33cÞ
In Appendix C we show that:
Pbð1Þ > 0; Pbð2Þ < 0 ð33dÞ
which has the following physical interpretation. While the first two terms in the bolus velocity
(17c) correspond to the extraction of energy by the mesoscales from the mean field �h, the last two
terms, which contribute a negative Pb, correspond to the back-scatter of a fraction of the meso-
scale potential energy to the mean field �h. It is important to stress that the presence of Pbð2Þ is not
due to dissipation at the smallest scales (an irreversible process) since it is still within the adiabatic
approximation and it is a reversible process since that energy is put back into the large scales
reservoir of energy.
14.5. Energy dissipation rate

Using Eqs. (24a) K ¼ KtC and Eq. (30b) in K � ðerdÞ2=3, we obtain:
e � ðuCÞ3=2r	1
d � 10	10 m2 s	3 ð33eÞ
a value which is in agreement with the values of Toole et al. (1994, Table 1).
14.6. The dissipation length scale ‘1

As discussed in Appendix B, ‘1 is determined from the condition that the turbulent time scale
e	1=3‘

2=3
1 be of the order of the Coriolis time scale f 	1. Combining this relation with K � ðerdÞ2=3,

we obtain:
‘1 � K3=4r	1=2
d f 	3=2 � 1 km ð33fÞ
14.7. Geostrophic turbulence

To understand the relation between the energy cycle described in Appendix B and Charney�s
(1971) geostrophic turbulence, we begin with the definition of PV (potental vorticity) given in the
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first of (1h). Separating f and h into their mean and fluctuating components, we have to the first-
order in the fluctuating fields:
�hq0 ¼ f0 	 f �h	1h0 ð33gÞ

Using the geostrophic approximation to evaluate f0 and using Eqs. (4c,d) to compute the second
term, Eq. (33g) becomes:
�hq0 ¼ ðf �qÞ	1r2B0 	 f ð�hgÞ	1B0
qq ð33hÞ
Once transformed to z-coordinates, the rhs of Eq. (33h) coincides (without the b term) with the
fluctuating component of the pseudo-potental vorticity in Charney�s Eq. (8). Let us consider Eq.
(33h) at the two scales, rd and ‘1 discussed in Appendix B. In the first case, use of Eqs. (11a)–
(11c) shows that both terms in (33h) are of the same order which means that the first term
(relative vorticity) does not dominate and thus is not conserved by itself. In turn, this implies
that there is no enstrophy cascade but only inverse energy cascade (energy is conserved). As one
moves to smaller scales (larger wavenumbers), the first term becomes dominant and so does
relative vorticity which makes enstrophy cascade possible, provided there is a feeding mecha-
nism. The transformation of potential energy into kinetic energy at ‘1 (Appendix B) also
generates enstrophy. Beginning at k1 � ‘	1

1 , energy cascades upscale to smaller wavenumbers
while enstrophy cascades downscale to larger k�s. Thus, for k > ‘	1

1 , Charney�s energy spectrum
k	3 is realized.

These predictions are confirmed by measurements of Samelson and Paulson (1988, SP) whose
most statistically representative data are shown in their Fig. 8 corresponding to the spectrum of
horizontal temperature gradient vs. horizontal wavenumbers. (the eddy potential energy spectrum
is obtained by multiplying by k	2). In SP Fig. 8, the flat range of UðkÞ begins at k0 � 3 10	2 rad/
km (SP employ cycles/km) which coincides with the prediction of the present model: k0 is given by
Eq. (13b) and with the value of rd of 40 km determined by SP, the predicted k0 coincides with that
of SP. Furthermore, the spectrum UðkÞ � k	3 begins at k1 � 1 rad/km also in agreement with the
model prediction (33f) that k1 ¼ 1=‘1 � 1 rad/km. Finally, in the region k0 < k < k1, the spectrum
of UðkÞ given in Fig. 8 of SP exhibits a power law spectrum less steep than )3 and much closer to
a Kolmogorov )5/3 predicted by our model.
15. Complete model

From a practical viewpoint, it may be of interest to have the model equations in isopycnal
coordinates collected together. This is done in Appendix D.
16. Conclusions

The primary goal of the work was to derive an expression for the three mesoscale terms that
enter the coarse resolution ocean model equations. They are the thickness flux, the relative
vorticity flux and the mesoscale kinetic energy K, Eq. (1m). We have derived three analytic
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expressions, Eqs. (17), (18), (21), (24a) and (30) by solving the eigenvalue problem for the Ber-
noulli function, Eq. (11a). To arrive at this equation, we have used the following ingredients:

(1) the non-linear interactions are treated with a turbulence model that was previously tested on a
variety of flows,

(2) the mesoscale eddy field are low frequency x < f ,
(3) the characteristic length scale of the large scale fields considerably exceeds that of the meso-

scale eddies,
(4) j�u=u0j < 1. Even though this ratio is not very small, corrections to all results enter as the

square of it, namely they are of the order of MKE/EKE� 0.1.
(5) we have assumed that the largest contribution to the mesoscale fluxes and EKE comes from

the region in wavenumber space where the spectra have their maxima and that all spectra have
approximately the same width.

The results we have obtained can be summarized as follows:

(1) The form of the bolus velocity u� given by Eqs. (17a)–(17c) does not coincide with either of
the two most frequently used expressions, Eq. (2a) and (2b). The latter are part of more gen-
eral expressions.

(2) The additional terms that appear in the bolus velocity u� have a structure similar to that de-
scribed by Bryan et al. (1999), namely that: ‘‘the bolus velocity is more than just an agent of
thickness mixing and flows are set up that are not closely linked to thickness source or
sinks’’. In fact, the new terms depend on the difference between the mean flow mean velocity
�u and its average h�ui.

(3) There are no a priori reasons why the extraction of energy from the large scales ought to be
100% efficient. Even within the adiabatic approximation, some of the mesoscales energy can
be back-scattered to the large scale field, reducing the efficiency of the ‘‘flattening of the is-
opycnals’’ process and restoring some of the mean potential energy. The process is due to the
presence of additional terms in the expression for u�.

(4) The bolus velocity u� satisfies the baroclinicity condition Eq. (19).
(5) While several studies have strived to relate the mesoscale diffusivity jM to the large scale re-

solved fields, less attention has been paid to the fact that within a strictly adiabatic model, jM

is actually infinite. This is due to the fact that without irreversible processes such as dissipa-
tion (which by definition is absent in the adiabatic limit), the energy drawn by the eddies
would keep on increasing, ultimately leading to infinite potential and kinetic energy. Since
jM � rdK1=2, Eq. (18), this leads to an infinity diffusivity. The present model includes dissi-
pation and shows that K � g, where g can be viewed as the degree of adiabaticity, the limit
g ! 1 representing full adiabaticity.

(6) The mesoscale diffusivity jM given by Eq. (18) is no longer an adjustable parameter since it
can now be computed in terms of the resolved fields. The predicted z-dependence of jM is in
agreement with the one suggested by heuristic models.

(7) The mesoscales affect the mean momentum equations via the relative vorticity flux Ff. The
present model yields expression (21) for Ff. It contains both a gradient of the mean potential
vorticity and the difference �u	 h�ui.
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(8) The relative vorticity flux, the PV-flux and the thickness flux are related:
Fq ¼ Ff 	 q̂Fh ¼ Ff 	 q̂�hu� ð34aÞ
From this, one derives that the PV-flux has the form:

Fq ¼ 	�hjMrq̂þ F�
q ð34bÞ

where
F�
q ¼ Ff 	 q̂�hðAdditional termsÞ ð34cÞ
where Eq. (2d) must be used. The RHY-model (Rhines and Holland, 1979; Rhines and
Young, 1982a,b) showed that the q-flux ‘‘should have a down-gradient component’’. The
first term in Eq. (34b) confirms that conclusion but in addition it provides the explicit form of
the extra terms that the RHY model could not compute since it did not provide a closure.

(9) The model shows that the relative vorticity Ff is entirely contributed by the ageostrophic com-
ponent of the mesoscale velocity field. Thus, if one assumes a geostrophic flow, Eq. (34a) re-
duces to:
Fq ¼ 	q̂Fh ð34dÞ

in which case there would be only one flux to be modeled, in addition to the eddy kinetic
energy K. However, as shown in Appendix B, the ageostrophic mesoscale velocity is
instrumental in closing the Lorenz energy clycle.

(10) At the present stage of development of the model, we are unable to compute the filling factor
s in Eqs. (18) and the adiabaticity index g, Eq. (30b). The reasons are strictly technical. Had
we solved the mesoscale dynamic equations numerically rather than analytically, we would
have obtained the spectra in k-space and with that information we could have computed s
and g. For the time being, we chose to solve the equations analytically to exhibit the major
features in a way than can be interpreted physically. In reality, even if we don�t know the
numerical values of s and g, they have a well-defined physical meaning and are not fudge
factors. Future work on this problem should be able to compute them.

In conclusion, we believe that a sufficient numbers of new results have emerged from this
analysis to justify testing the new mesoscale model with an eddy resolving ocean code and, if
successful, with a coarse resolution code.
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Appendix A. Bolus velocity

We begin by writing Eq. (16a) as
Fh ¼
Z eFhðkÞd2k ðA:1aÞ
where
FhðkÞdðk	 k0Þ ¼ Reh0ðkÞu�ðk0Þ ¼ 	ðe� nÞRe�h0ðkÞu�ðk0Þ ðA:1bÞ

Combining (11a), (12a) and (10a,d) we obtain:
Reh0ðkÞu�ðk0Þ ¼ 	rtXrsk0�hf 	1uðkÞu�ðk0Þ ðA:1cÞ

where Xr is the real part of X. Since the field uðkÞ is axisymmetric, the correlation function in the
right hand side of (A.1c) is related to the energy spectrum EðkÞ:
uðkÞu�ðk0Þ ¼ ðpkÞ	1EðkÞdðk	 k0Þ ðA:1dÞ

and thus:
Reh0ðkÞu�ðk0Þ ¼ 	rtf 	1p	1EðkÞXrs�hdðk	 k0Þ ðA:1eÞ

Substituting back into (A.1a) and (A.1b) and using (12b), we obtain Eq. (16b) and (16c) of the text
where we also employ the relation:
ð2pÞ	1

Z
ðe� nÞðA � nÞdn ¼ 1

2
e� A ðA:1fÞ
Appendix B. Energy cycle

Because of the earth�s rotation, the large-scale mean velocity is perpendicular to the gradient of
the mean potential energy and the latter performs no work. As a result, mean potential energy is
two orders of magnitude larger than the mean kinetic energy (Riley and Lelong, 2000). Since
mean potential energy, whose rate of production we denote by Pb (with the subscript b for
baroclinic), cannot feed directly turbulent kinetic energy, it feeds eddy potential energy (process 1,
Fig. 1). The process can be identified directly in Eq. (10c). The last term represents the ‘‘cascade of
the thickness variance’’ which we denote by ep. The penultimate term in the rhs of (10c) describes
the energy exchange between the fields us and h via the ageostrophic velocity field up. In fact, this
term performs positive work on the field h (process 6). This work is almost fully balanced by the
negative work of the last term (process 2). An analogous balance occurs in the equation for the
field us, Eq. (5a). The last term, represented by ej, performs positive work on the field us (process
4). This work is balanced by the negative work of the fup term (process 5). This analysis implies
that near k � k0 the ageostrophic eddy field up almost fully transforms the geostrophic velocity
fluctuations field into thickness fluctuations (processes 5,6). The field h in turn propagates in k-space
to higher k�s until k1 where the turbulent time scale becomes of the order of the Coriolis time scale
f 	1. A typical value is ‘ � 1 km; it is important to note that at k1, vertical shear fluctuations are
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the largest and are of the order of the large scale Brunt–Vaisala frequency, N . Stated differently,
the Richardson number Ri6 1 thus enabling shear fluctuations to generate vertical turbulence.
One can thus view ‘1 as the horizontal scale associated with vertical turbulence. This result confirms
the model by Gargett (1993) whereby vertical turbulence is generated by the fluctuations of shear.
In summary, the energy cycle operates as follows:

1. at scales � rd, the gradient r�h of the large scale mean thickness (baroclinic instability) which is
related to the mean potential energy, feeds the thickness variance which is related to the eddy�s
potential energy,

2. the latter then cascades from large to small scales (process 2),
3. at ‘1, a fraction of eddy potential energy transforms into eddy kinetic energy (process 3a) while

the remaining eddy potential energy generates diapycnal turbulence whose energy is dissipated
into heat (process 3b),

4. the determination of ‘1 follows from the condition that the corresponding turbulent time scale
is of the order of the Coriolis time scale f 	1. A typical value is ‘1 � 1 km,

5. beginning at ‘1, eddy kinetic energy cascades backward to rd (process 4) where it reverts back to
eddy potential energy, which is also continuously fed by the baroclinic instabilities.
Appendix C. The integrals in Eqs. (30a)–(30f)

Here, we study the two integrals:
I1 ¼ 	
Z

jM
�h	1r�h
h

	 h�h	1r�hi
i
� r�hdq ðC:1Þ

I2 ¼ 	
Z

jMe� ð�u	 h�uiÞ � r�hdq ðC:2Þ
that appear in the equation for the rate of production of eddy potential energy Pb, Eqs. 30d,30e.
Using Eq. (18) and the definition of the weighted average h��i given in Eqs. (15d), we obtain from
(C.1) (to simplify notation, we don�t write the upper and lower limits of integrations which are zt
and zb):
I1 ¼ 1:8rdK
1=2
t

Z
C1=2ðzÞ �h	1r�h

h
	 h�h	1r�hi

i2
dz ðC:3Þ
which is clearly positive. Using (15c), we rewrite (C.2) as:
I2 ¼
Z

jMðe� �uÞ � �h	1r�h
h

	 h�h	1r�hi
i
dz ðC:4Þ
To ascertain the sign of this integral, we need to evaluate the vertical scales of the functions in the
integrand. Since jM � K1=2ðzÞ, the variations of jM occur on scales P 103 m, as is clear from Fig.
1. The same vertical scale characterizes the term �h	1r�h. In fact:
Z

�h	1r�hdz ¼ 	
Z

rzqdq ¼ rð�ztop 	 �zbotÞ � 10	3 ðC:5Þ
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while near the surface, �h	1r�h � 10	6 m	1. Thus, the vertical scale of this function is �103 m. As
for the function �uðzÞ, its characteristic scale is j�u=�uzj � 102 m. In fact, j�uj � 10	2 m s	1 whereas
j�uzj � Ri	1=2N	1 � 10	4s	1 ðC:6Þ

since Ri � 103 and N 2 � 10	5s	2. Therefore, the integral (C.4) is contributed mostly by the upper
layer of the thickness (few hundred meters), a scale that is considerably smaller than the char-
acteristic vertical scale of �h	1rr

�h which is P 103 m. For this reason, the first term exceeds the
second term. Integrating by parts, using the geostrophic relation and the boundary conditions on
B, we obtain:
gfI2 ¼
Z

jMrB � rBqq dq ¼ 	
Z

jMðrBqÞ2 dq 	
Z

ðoqjMÞrB � rBq dq ðC:7Þ
Since the vertical scale of rB coincides with that of �u, the first term, which is negative, dominates.
Appendix D. Complete model in isopycnal coordinates

Dynamic equation for the mean thickness �h:
o

ot
�hþr � ðhuþ FhÞ ¼ 0 ðD:1Þ
Mesoscale flux:
Fh ¼ �hu� ðD:2Þ

Bolus velocity:
u� ¼ 	jMW ðD:3Þ
W ¼ 	q̂	1rq̂þ hq̂	1rq̂i þ ð1þ r	1

t Þr	2
d f

	1e� ð�u	 h�uiÞ ðD:4Þ
W ¼ �h	1r�h	 h�h	1r�hi þ ð1þ r	1

t Þr	2
d f

	1e� ð�u	 h�uiÞ ðD:5Þ

Vertical average:
hX i 

Z
XC1=2�hdq

Z
C1=2�hdq

� �	1

ðD:6aÞ

CðqÞ 
 KðqÞ=Kt ðD:6bÞ

The lower and upper limits in the integral in (D.6a) are qt and qb.
Mesoscale diffusivity:
jM ¼ 1:8s1=2rdK
1=2
t C1=2ðqÞ ðD:7Þ

CðqÞ ¼ jB1j2 þ ja20j
1þ ja0j2

ðD:8Þ
The function B1 is solution of eigenvalue problem:
o2

oq2

�
þ k2

n

�
Bn ¼ 0 ðD:9aÞ
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where
kn ¼ ðrnf Þ	1N�h ðD:9bÞ

with r1 
 rd. The boundary conditions are (the indices t and b stand for top and bottom):
o

oq
BnðqÞ ¼ 0 at q ¼ qt;b ðD:9cÞ
and B1 is normalized such that:
B1ðqtÞ ¼ 1 ðD:9dÞ
Furthermore:
ja0j2 ¼ 2f 2r4dK
	1
t J2 ðD:10Þ

J ¼ H	1

Z
hðq� 	 qÞW�hdq ðD:11Þ
and hðxÞ ¼ �1 for x > 0 and x < 0. The lower/upper limits in the integral in (D.11) are qt and qb.
Surface kinetic energy Kt:
Kt ¼ 5:7g/ ðD:12Þ
/ ¼ ð/1 þ /2Þ/	1

3 ðD:13Þ

/1 ¼ 	A1

Z
jB1j½�h	1r�h	 h�h	1r�hi�r�hdq ðD:14Þ

/2 ¼ A2

Z
jB1jðe�r�hÞ � ð�u	 h�uiÞdq ðD:15Þ

/3 

Z

jB1j3�hdq ðD:16Þ

A1 
 r4df
2; A2 
 ð1þ r	1

t Þr2df ðD:17Þ
The value of rt is 0.72 (CD96).
Dynamic equation for the mean velocity �u:
�ut þ ðf þ �fÞe� �u ¼ 	r�B� 	 e� Ff ðD:18aÞ
where
B�
¼ 1

2
�u2 þ K þ q	1

0 ð�p þ g�qzÞ ðD:18bÞ
Relative vorticity flux:
Ff ¼ Kð1þ rtÞ	1
exhq̂	1rq̂i 	 Kðrtr2df Þ

	1ð�u	 h�ui þ cRÞ ðD:19aÞ
cR ¼ rtr2de�rf ðD:19bÞ
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